

SUSQI PROJECT REPORT

The introduction of the Isla App: promoting remote care using a digital platform

Start date of Project: June 2025

Date of Report: October 2025

Team Members:

- Alexandra Anderson, Advanced Professional Lead alexandra.anderson3@nhs.net
- Natasha Jones Goulding Professional Lead natasha.jones52@nhs.net
- Amanda Fitzsimons, trainee Advanced Clinical Practitioner a.fitzsimons@nhs.net

Background:

Patients requiring long-term condition management in community settings often face significant challenges in accessing timely and effective care. These individuals, many of whom are older adults or individuals living with chronic conditions such as diabetes, heart failure, or complex wounds, are particularly vulnerable to deterioration when care is delayed or fragmented. Missed opportunities for early intervention can lead to complications, unnecessary hospital admissions, and increased reliance on urgent care services.

Urgent Community Response provide urgent care to people in their own homes that may have otherwise resulted in an admission to an acute hospital, enabling them to live independently for longer within Birmingham. UCR aims to prevent hospital admission over a seven-day period, operating 08:00-22:00, covering UHB and City/Sandwell Sites and Birmingham and Solihull (BSOL) ICB. The diversity in patient presentation gives rise to multiple treatment pathways across the city.

Patients can be referred to UCR under one of the following pathways:

- Acute Carer Crisis
- Exacerbation of long term conditions
- Falls without apparent injury
- Increased confusion
- Functional deterioration
- Catheter crisis
- End of life/Palliative care crisis
- Decompensation of Frailty

The delay in care not only affects clinical outcomes but also has social and emotional consequences. Patients may feel isolated or anxious about their health, especially when they are unsure whether symptoms warrant attention. For those with mobility issues or limited access to transport, attending

frequent appointments can be burdensome, leading to missed visits and further delays in treatment. From an environmental perspective, the traditional model of care, reliant on travel for both patients and staff, contributes significantly to carbon emissions. In community nursing services, where visits are often made by car across wide geographic areas, the cumulative environmental impact is substantial.

To address these issues, Birmingham's Adult Community Services nursing team has introduced the <u>Isla Health app</u>, a secure digital platform that allows patients to share photos, videos, and clinical information with their care team remotely. This digital innovation supports earlier diagnosis and more responsive care by enabling clinicians to assess changes in a patient's condition between scheduled visits. For example, a patient with a deteriorating wound can submit images for review, allowing nurses to intervene sooner and potentially prevent complications or hospitalisation.

The App has already been successfully implemented in other services in the Trust, including podiatry and Tissue viability. Evidence from other NHS Trusts supports the effectiveness of this approach. In Nottinghamshire and Leicestershire, the use of Isla has led to reductions in same-day visit demand, faster healing times, and improved patient satisfaction. Clinicians report better caseload management and reduced administrative burden, while patients feel more engaged and reassured. Environmentally, the app has helped avoid millions of travel miles, aligning with NHS sustainability goals. Financially, it has demonstrated strong return on investment, with significant savings through reduced appointments and improved workflow efficiency.

By enabling patients to share clinical information remotely, the Isla Health app facilitates earlier, more personalised interventions, with potential to empower patients to participate actively in their care. This project is closely aligned with NHS England's strategic direction, particularly the three key shifts outlined in the 10 year plan:

- From hospital to community: more care will be available on people's doorsteps and in their homes
- From analogue to digital: new technology to liberate staff from admin and allow people to manage their care as easily as they bank or shop online
- From sickness to prevention: reach patients earlier and make the healthy choice the easy choice

The introduction of the Isla Health app in Birmingham's Adult Community Services is expected to improve outcomes while reducing pressures on staff and the service. It supports NHS England's strategic priorities, including the shift from hospital to community-based care, the adoption of digital tools to streamline services, and a focus on prevention and early intervention. By enabling remote consultations and digital monitoring, the app not only facilitates more proactive and personalised care, but contributes to the NHS's commitment to environmental sustainability and achieving a net zero health service.

Remote consultations have become integral to urgent community response (UCR) pathways, enabling rapid assessment and decision-making outside hospital settings. Within Birmingham UCR, the adoption of Isla Health, a secure image-sharing platform, has supported clinicians in remotely reviewing wounds, frailty presentations, and other clinical conditions. This capability reduces the need

for face-to-face visits, facilitates timely advice, and avoids unnecessary hospital admissions. Importantly, when integrated with computer-aided dispatch (CAD) systems, Isla Health allows effective triage of calls, ensuring that remote or in-person responses are appropriately aligned with patient acuity. The project has also been highlighted through the Green Team Competition, where Isla Health use was associated with reduced travel and lower carbon emissions, aligning with the Greener NHS policy framework (NHS England, 2020).

To underpin this review, a structured evidence search was undertaken by Lesley Huss, Smallwood Library (June 2025). This search identified systematic reviews, meta-analyses, and policy documents from 2019–2025 relating to the impact of remote consultations across multiple specialties and populations. The evidence provides a broad context for considering how technologies such as Isla Health and CAD fit into wider UK digital health policy and practice.

Policy Context

Remote consultations are strongly positioned within national transformation agendas. The NHS Long Term Plan (NHS England, 2019) commits to *digital-first primary care*, while the Fit for the Future: 10-Year Health Plan (HM Government, 2025) sets out three radical shifts: from hospital to community care, from analogue to digital, and from sickness to prevention. Technical enablers such as the Internet First Policy (NHS Digital, 2022) and the expansion of the NHS App (NHS Digital, 2025) have been central in scaling up access. The Digitise, Connect, Transform Strategy (NHS England, 2022) and the Inclusive Digital Healthcare Framework (NHS England, 2023) stress the importance of interoperability, safety, and equity, recognising that uneven digital maturity across providers risks widening inequalities.

Sustainability has become a parallel driver. The Delivering a Net Zero NHS plan (NHS England, 2020) highlights reduced travel from remote care as a major contributor to emission reduction. Updated calculators demonstrate how remote consultations can provide measurable environmental savings (Sustainable Healthcare Networks, 2025).

Clinical Effectiveness

Evidence from systematic reviews shows that remote consultations can be clinically comparable to inperson care for several long-term conditions. For example, in type 2 diabetes, virtual consultations were found to be equivalent to face-to-face care in terms of effectiveness, efficiency, patient-centredness, and timeliness (Aldakhil et al., 2025). In paediatric asthma, telemedicine was associated with more symptom-free days and improved control compared with usual care (Ong et al., 2024). Nurse-led telephone triage has shown effectiveness in oncology, with improvements in pain, fatigue, and depression (Sezgin & Bektas, 2024).

In mental health, an umbrella review found telemedicine to be significantly effective in reducing depression and anxiety in adults (Chen et al., 2024). In specialist contexts, such as neuro-oncology, virtual consultations were valued for follow-up but considered less appropriate for initial assessments (Feldheim et al., 2023). Dermatology presents challenges, with reviews showing diagnostic accuracy to be slightly lower than face-to-face care, though improvements in image quality and teledermoscopy could mitigate this (Nikolakis et al., 2024).

Equity and Access

Despite policy ambitions, equity signals remain a key concern. Systematic reviews highlight that remote consultations are more likely to be accessed by younger, female, and digitally literate patients, while older adults, those in deprived communities, and patients with limited English proficiency face barriers (Campbell et al., 2023; Chen et al., 2024). Addressing digital exclusion through hybrid models, assisted access, and translation services is therefore critical. Isla Health provides an example of mitigating inequity in UCR, as care coordinators can capture and upload images on behalf of digitally excluded patients, ensuring they still benefit from remote clinical oversight.

Workforce Implications

The shift to digital consultations has profound workforce implications. While clinicians value the flexibility and potential efficiency of remote models, concerns persist regarding workload intensification, communication challenges, medico-legal risk, and digital fatigue (Campbell et al., 2023; Feldheim et al., 2023). For ACPs and nurses, remote consultations create opportunities to expand practice scope, especially in triage and follow-up roles. However, reviews stress the need for investment in training, digital literacy, and governance to ensure safe and sustainable practice.

Sustainability

Environmental sustainability adds further rationale for remote consultations. Carbon footprint analyses confirm that avoided travel results in significant reductions in greenhouse gas emissions (Sustainable Healthcare Networks, 2025). Within UCR, integrating CAD and Isla Health not only optimises workforce deployment but also directly contributes to the Greener NHS agenda (NHS England, 2020).

Critique and Recommendations

The literature demonstrates that remote consultations are broadly effective, acceptable to patients, and aligned with national policy goals of digital transformation and sustainability. However, persistent challenges remain:

- Equity: Exclusion of older, deprived, or digitally limited groups requires targeted interventions and hybrid service models.
- Workforce: More evidence is needed on the long-term impact of digital models on ACPs and nurses, particularly around workload, skills, and job satisfaction.
- Clinical safety: Diagnostic accuracy in specialties reliant on examination (e.g. dermatology, new patient assessments) remains a concern.
- Cost-effectiveness: While travel savings are clear, full economic evaluations including infrastructure costs are limited.
- Patient experience: Evidence is dominated by short-term satisfaction surveys; longitudinal data are needed on trust, continuity, and empowerment.

Future research should focus on inclusive design, workforce development, and comprehensive evaluation of digital models across clinical, economic, and environmental domains. In UCR, the combined use of Isla Health and CAD provides a compelling example of aligning national ambitions with local innovation. Robust evaluation of these models will be critical to ensuring they deliver on their promise of accessible, equitable, safe, and sustainable care.

The Birmingham team is well-positioned to lead this initiative, drawing on their experience in managing complex community caseloads and their strong focus on quality improvement and sustainability. Serving a diverse population with significant long-term care needs, the team is implementing a solution that directly addresses clinical, social, environmental, and financial challenges—enhancing care delivery while aligning with national priorities for digital transformation and integrated, patient-centred care.

Specific Aims:

To implement a digital solution (Isla APP) to:

- enable patients with long-term conditions to share clinical information remotely
- ensure patients are seen by the right person in the right place at the right time, supporting timely interventions
- reduce avoidable deterioration and complications and associated system pressures such as unnecessary visits to Accident and Emergency by enabling safer handovers by clinicians
- lower the carbon footprint of care delivery within Birmingham's Adult Community Services

Methods:

Confirming the Need for Change:

Before implementation, clinicians within the Single Point of access relied on their telephone triage skills to identify if a patient required a face-to-face visit. A small rejection data audit reviewing 10 patient journeys demonstrated that patients were being referred to A&E who could have been managed in the community. We analysed the rejection data and reviewed the patient outcomes, identifying that 80% of patients rejected could have been managed in the community. There is no national data collected and no literature to support how other comparable services perform. We identified that we needed to support our triage team in their decision-making processes. We had conversations with the clinicians. One of their suggestions was video or photo links. We knew of solutions being used in primary care and soon became aware of software used within other community services.

The successes reported by other Trusts, such as Nottinghamshire and Leicester, provided additional confidence, particularly their reductions in same-day visit demand and improved patient outcomes. Learning from these sites included the importance of strong clinical leadership, early engagement with staff, and clear communication about the benefits of digital tools, which helped streamline local implementation.

App Selection and Alternatives:

Isla was chosen due to its proven track record in similar NHS settings, ease of integration with existing systems, and positive feedback from both clinicians and patients elsewhere. The decision was informed by pilot testing with senior team members, who assessed usability and clinical relevance before wider rollout.

Implementation Process:

The Isla Health app was introduced to Birmingham's Adult Community Services in February to support patients with long-term conditions by enabling remote sharing of clinical information. Initial

implementation focused on hospital avoidance, with onboarding and engagement efforts aimed at securing team buy-in across CCC and UCR roles.

- Initially the app was tested by the digital lead and a senior ACP. It was easy to use and was
 found to be relatively self explanatory and providing patients or their carers could access the
 app would be easy for them to use too.
- Steps taken for rollout:
 - o Initially all permanent triage staff were provided with log in access and training on how to use the app.
 - O This has then been extended to temporary and bank staff who work within the Single Point of Access.
 - The training was adhoc and provided to the clinician when they logged in for the first time by a senior member of the team.
 - The digital lead worked very closely with the clinicians to ensure they were confident in using the app.
 - The Research and Innovation team were involved and supported with the initial launch as they were already monitoring the impact of ISLA in a different team.
 - O The main barriers that were encountered were with patients who did not have digital access. This was overcome in some circumstances if the patient consented for us to send a link to a carer/ family member and they provided the contact details themselves, otherwise these patients would have required a face to face visit.

Usage has gradually increased, supported by ongoing conversations to embed the app more widely into daily practice. The process has included evaluating early outcomes and identifying opportunities to expand its use beyond urgent care, such as in proactive management and prevention.

Measurement:

Patient outcomes:

There are many potential benefits to patient health. Data has been, or is planned to be collected. We have also summarised potential impacts based on similar projects and existing literature in the results section.

Measures included

- number of urgent home appointments
- number of ambulance journeys
- number of hospital admissions
- number of hospital appointments
- rejected referrals (to show if seen by correct professional first time care more timely and efficient)
- infection risk (literature)

The research team supported data collection.

Environmental sustainability:

To estimate the greenhouse gas (GHG) emissions impact of the introduction of the ISLA App, the carbon footprint of the App use pathway and the carbon footprint of the change in healthcare activity has been estimated. The following was included in estimating the carbon footprint of app usage:

- Patient's smartphone use 10 minutes
- Staff triaging incoming texts with or without images using a laptop 10 minutes
- Staff follow-up phone call 10 minutes

The carbon footprint estimation of the smartphone use included the embodied emissions of the smartphone, electricity use and network and server use. The estimation was adapted from Mike Berners-Lee 'How bad are bananas' (1). For the embodied emissions it was assumed that the smartphone has a lifetime of 5 years and that people use their phone on average 195 minutes a day. App usage time was assumed to be 10 min.

Similarly, it was assumed that staff take around 10 min per request to review the text and images using a computer. To estimate the carbon footprint of the computer's embodied emissions a life time of 5 years were assumed. Electricity and network and server use are responsible for 32 gCO2e. The GHG emissions associated with the staff's follow-up phone call was based on the GNHS Business impact tooling version 3 spreadsheet (2). We assumed that the phone call would last 15 min.

Records of App use have shown that it prevents unnecessary visits by the urgent community response team to patients and admission of patients to hospital. It was assumed that patients would be travelling by non-emergency patient transport to the hospital. The carbon footprint of a visit by the community team was based on the distance staff travel and their mode of transport. It was assumed that they travel on average the same distance as recorded for patients in the Health Outcomes Travel Tool which is 7.82 miles. An average sized car with unknown fuel was assumed for patient transport with the emissions factor sourced from the Department of Energy Security and Net Zero's database for carbon conversion factors (3). For avoided hospital admissions it was assumed that patients average length of stay is 9.1 bed days.

The carbon footprint of an inpatient bed day and non-emergency patient transport was sourced from the Sustainable Healthcare Coalition's Sustainable Care Pathway Guidance - Inpatient Bed Day Module (4) and Patient Travel Module (5).

Economic sustainability:

Financial impacts of the project have been calculated by the Research and Innovation Team.

Social sustainability:

Impacts on staff and patients were evaluated through surveys.

Results:

Patient outcomes:

The introduction of the Isla app has improved the standard of the care that patients receive by ensuring a more timely response to patient concerns. Sending a photograph through the use of the

App to clinicians resulted in patients being triaged remotely. This has improved clinical decision-making and management and led to more efficient, timely care that is patient centred.

Home-visits by clinicians are reduced, patients avoid un-necessary admissions to hospital, and the app has led to a reduction in the number of ambulance journeys carried out for patients - meaning clinical time and ambulance journeys can be re-allocated to those which are necessary.

Environmental sustainability:

The carbon footprint per patient using the ISLA App pathway is with 0.069 kgCO2e small. The staff's computer use for monitoring the ISLA App contributed 0.014 kgCO2e, the phone follow-up 0.005 and the patient's App use 0.05 kgCO2e.

In the first 4 months, the ISLA App was used 416 times leading to greenhouse gas (GHG) emissions of 28.74 kgCO2e. In the same period, the use of the ISLA App prevented 24 visits by the urgent community response team and 19 hospital admissions, leading to savings of 128 kgCO2e and 6,703 kgCO2e respectively. The high savings of avoided hospital admissions are due to the avoidance of non-emergency patient transport, 150 kgCO2e, and inpatient bed days, 6,553 kgCO2e assuming that on average patients stayed 9.1 days (5).

Taking the ISLA App use path into account, the net GHG emissions amount to 6,802 kgCO2e for the first 4 months. Assuming that the ISLA App use and avoidance of urgent community response team call outs and hospital admissions of the first 4 months are representative for the rest of the year, the ISLA App use could lead to annual net GHG emissions saving of **20,406 kgCO2e**.

Economic sustainability:

During the first 4 months of use (February to May), 24 home visits and 19 hospital admissions were avoided, equating to £26,000 of savings in 4 months, or £78,000 per year.

Social sustainability:

A questionnaire was undertaken by the team exploring staff views on the use of the app. Although there was only a small sample size of only 4 responses, feedback from the UCR team was positive.

- Use of the app: Staff questionnaires showed that all responders were aware of and were using the App asking patients or their carers to take photographs of patients' complaints.
- Perceived benefits: All responses outlined that the App had prevented hospital admissions half adding that its use had reduced ambulance journeys and helped staff provide appropriate
 responses to patients. All staff reported other benefits which included improved decisionmaking, faster diagnosis and increased ability to decide appropriateness of care.
- Perceptions from patients: Staff reported no patients (or their carers) expressed concerns regarding the app's use. 3 of 4 staff members reported that patients did not provide any direct feedback on the app. One staff member reported that patients had commented on the Isla app helping the triage process.
- Importance of Environmental impact: Staff were asked to consider the wider benefits of their project- its environmental impact and whether this was something that they regarded as important. ¾ of respondents had considered the environmental benefits of the project which

was 'very important' to them. 1 replied that they'd not and the environmental impact of the project was not important to them. Asked about other benefits of reduced ambulance journeys, reduced admissions and reduced home visits, all responders said they'd considered these to be a benefit of the project, and these were of 'real importance' to ¾ of respondents, and of 'somewhat importance' to one staff member.

• Challenges: Staff were asked if there were any challenges they'd come across when trying to use the App. There were a few instances of errors. For example, one staff member expressed 'logging on' difficulties at times which meant repeating the logging in process. In one case a relative was unable to take a photo, one where a patient was unable to follow the link to the app. Other problems arose when patients didn't have access to a smart phone, or a phone camera. One care-home staff member raised concerns about data protection associated with App use.

Although only one patient response was collected, it showed very positive feedback in support of the project. They reported the app was easy to use, the response time from a clinician was very quick, no repeat information was needed to be sent, and that the App provided reassurance. They felt the app has assisted them to be seen sooner with more timely access to treatment or advice. This patient also felt that the app had prevented them from being admitted to hospital.

While not captured in the survey, there are potential additional benefits to patients such as preventing disruptions to him care packages and impacts on patient stress, wellbeing, daily routines, etc. Reduced disruption will also support families and carers.

Discussion:

The introduction of the Isla App has demonstrated clear benefits across clinical outcomes, efficiency, sustainability, and user experience. Over the evaluation period, engagement with the App increased substantially, with monthly submissions rising from 88 in February to 294 in September. This trend reflects both growing adoption by clinicians and patients and increasing confidence in its use as part of routine care.

The data from March to June highlight tangible service-level impacts. During this four-month period, the use of the Isla App was associated with 24 home visits and 19 hospital admissions, equivalent to a cost of approximately £26,000. When annualised, this represents a potential saving of around £78,000 in healthcare resource use. The App has enabled clinicians to triage patients remotely and make more informed decisions, ensuring that in-person visits and hospital admissions are reserved for those who most require them. This more efficient allocation of clinical and ambulance resources supports improved capacity and responsiveness within the system.

Environmental analysis shows that the App not only improves care pathways but also contributes to the NHS Net Zero agenda. The carbon footprint of using the Isla App is minimal (0.069 kgCO₂e per patient), yet its impact on emissions reduction is significant. In the first four months alone, the avoidance of 24 urgent community response visits and 19 hospital admissions saved approximately 6,831 kgCO₂e, leading to a net saving of 6,802 kgCO₂e. If usage continues at this rate, annual savings could exceed 20,000 kgCO₂e. These findings demonstrate how digital solutions can deliver dual benefits—enhancing care quality while reducing the environmental burden of healthcare delivery.

Social and experiential outcomes further reinforce the value of the App. Although staff feedback was based on a small sample (n=4), all respondents reported positive experiences and direct benefits, including reduced hospital admissions, fewer ambulance journeys, and improved decision-making. The majority also recognised the environmental benefits of the project as important or very important. Feedback from the one patient respondent was similarly positive, citing ease of use, timely clinical response, and reassurance that the App helped avoid hospital admission. While limited in number, these responses suggest high levels of acceptability and satisfaction among both staff and patients.

Beyond the measured outcomes, there are likely wider unquantified benefits. Reduced hospital admissions and home visits can minimise disruption to care packages, prevent social admissions, and lessen the financial and emotional strain on patients and families. Enabling patients to remain at home supports independence, continuity, and wellbeing—core principles of patient-centred care.

Overall, the findings suggest that the Isla App has enhanced the efficiency, quality, and sustainability of care delivery. It supports timely clinical decision-making, reduces unnecessary resource use, and contributes meaningfully to environmental targets. Although based on a relatively short evaluation period and small qualitative sample, the results provide strong evidence to support continued use and potential expansion of the App within community and acute settings.

Conclusions:

This project has proven highly valuable in demonstrating how digital innovation can improve access, safety, and sustainability in community-based urgent care. The Isla Health App provided clinicians with a practical and secure means to assess patients remotely, enabling earlier and more informed decision-making. This not only enhanced the timeliness and quality of care but also reduced unnecessary home visits, ambulance callouts, and hospital admissions. The work directly supports national NHS objectives for digital transformation, admission avoidance, and carbon reduction, offering a scalable model for other community and urgent care services.

The evaluation also generated important local learning on how digital solutions can be implemented effectively in a complex, multi-pathway environment. By quantifying both clinical and environmental benefits, the project has provided compelling evidence for the value of remote assessment in supporting long-term condition management and sustainability goals.

Several factors contributed to the success of the project:

- Strong clinical leadership and engagement: Early involvement of advanced clinical practitioners (ACPs) and the digital lead ensured clinical credibility and confidence in the new system.
- Collaborative implementation: Ongoing support from the Research and Innovation team and open dialogue between clinicians, digital staff, and management helped to embed the App within daily workflows.
- Ease of use and adaptability: The App's simple interface facilitated rapid uptake by both staff and patients, with minimal formal training required.

- Clear alignment with NHS priorities: The project's focus on hospital avoidance, efficiency, and environmental impact resonated with local and national strategies, securing organisational support.
- Data-driven monitoring: Regular tracking of usage and outcomes enabled continuous reflection and adaptation during implementation.

Not all aspects of the implementation were straightforward. Key challenges and learning included:

- Digital access and inclusion: Some patients lacked smartphones or digital literacy, which limited their ability to engage directly with the App. The team addressed this by involving carers and family members, but the issue highlights the need for hybrid models and equityfocused planning.
- Technical and process issues: Occasional login difficulties and uncertainty around "signing off" patients from the App impacted data completeness. This emphasised the importance of robust digital governance and continuous feedback loops between users and technical teams.
- Variation in staff familiarity: Ad hoc training meant that confidence levels varied, demonstrating the need for structured onboarding, refresher sessions, and clear guidance documents.
- Limited qualitative data: Low response rates to staff and patient surveys restricted the ability to capture broader experiential insights. Future evaluations will include proactive follow-up and wider sampling to strengthen the evidence base.

To sustain and expand the positive impact of the project, several steps have been taken:

- Embedding the App in standard practice: Isla Health has been formally integrated into the UCR team's routine workflow and included in staff induction processes.
- Ongoing monitoring and audit: Continued data collection on App use, patient outcomes, and environmental impact ensures the service remains evidence-led and responsive.
- Digital champions: Senior clinicians and the digital lead act as local champions, supporting staff confidence, troubleshooting issues, and promoting best practice.
- Cross-service learning: Insights from this project are being shared across Birmingham and Solihull Integrated Care Board (ICB) and within other community services to inform future digital adoption.
- Continuous improvement: Lessons learned have informed updates to training materials, user guidance, and data collection methods, ensuring more robust evaluation in subsequent phases.

In summary, this work has demonstrated that digital tools such as the Isla Health App can meaningfully enhance patient care, efficiency, and sustainability in community settings. Success has been driven by strong clinical engagement, clear alignment with organisational priorities, and a culture of reflection and adaptation. The project has created a solid foundation for lasting change and provides a replicable model for other teams seeking to embed digital innovation in urgent and community care.

References

- (1) Mike Berners-Lee. How bad are bananas. Profile Books Ltd. Revised 2020 Edition
- (2) Greener NHS. Business Case Carbon Impact Tooling V3.0
- (3) Department of Energy Security and Net Zero. Greenhouse gas reporting: conversion factors 2025: full set. https://assets.publishing.service.gov.uk/media/6846a4f55e92539572806125/ghg-conversion-factors-2025-full-set.xlsx
- (4) Sustainable Healthcare Coalition (2015). Sustainable Care Pathway Guidance. Inpatient Bed Day Module. https://shcoalition.org/wp-content/uploads/2019/10/Sustainable-Care-Pathways-Guidance-Inpatient-Bed-Day-Module-Oct-2015.pdf
- (5) Sustainable Healthcare Coalition (2015). Sustainable Care Pathway Guidance. Patient Travel Module. https://shcoalition.org/wp-content/uploads/2019/10/2.-Sustainable-Care-Pathways-Guidance-Patient-Travel-Module-Oct-2015.pdf
- (6) NHS Digital. Hospital Admitted Patient Care Activity, 2024-25. https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity/2024-25

Critical success factors

Please select one or two of the below factors that you believe were most essential to ensure the success of your project changes.

People	Process	Resources	Context
☐ Patient involvement and/or appropriate information for patients - to raise awareness and understanding of intervention	☐ clear guidance / evidence / policy to support the intervention. ☐ Incentivisation of the strategy – e.g., QOF in general	☐ Dedicated time ☐ QI training / information resources and organisation	☐ aims aligned with wider service, organisational or system goals. X Links to patient
X Staff engagement	practice X systematic and coordinated	process / support ☐ Infrastructure	benefits / clinical outcomes
☐ MDT / Cross- department communication	approach ☐ clear, measurable targets	capable of providing teams	☐ Links to staff benefits
☐ Skills and capability of staff	☐ long-term strategy for sustaining and embedding	with information, data and equipment needed	☐ 'Permission' given through the organisational
☐ Team/service agreement that there is a problem and changes are	change developed in planning phase integrating the intervention	☐ Research / evidence of change successfully	context, capacity and positive change culture.
suitable to trial (Knowledge and understanding of the	into the natural workflow, team functions, technology	implemented elsewhere	
issue) ☐ Support from senior	systems, and incentive structures of the team/service/organisation	☐ Financial investment	
organisational or system leaders			

